Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-6}^{13}\frac{2+\frac{-10-3}{2\left(-3\right)-\left(-5\right)}}{-6-\left(-5\right)-10}\mathrm{d}x
Multiply 1 and -10 to get -10.
\int _{-6}^{13}\frac{2+\frac{-13}{2\left(-3\right)-\left(-5\right)}}{-6-\left(-5\right)-10}\mathrm{d}x
Subtract 3 from -10 to get -13.
\int _{-6}^{13}\frac{2+\frac{-13}{-6-\left(-5\right)}}{-6-\left(-5\right)-10}\mathrm{d}x
Multiply 2 and -3 to get -6.
\int _{-6}^{13}\frac{2+\frac{-13}{-6+5}}{-6-\left(-5\right)-10}\mathrm{d}x
The opposite of -5 is 5.
\int _{-6}^{13}\frac{2+\frac{-13}{-1}}{-6-\left(-5\right)-10}\mathrm{d}x
Add -6 and 5 to get -1.
\int _{-6}^{13}\frac{2+13}{-6-\left(-5\right)-10}\mathrm{d}x
Fraction \frac{-13}{-1} can be simplified to 13 by removing the negative sign from both the numerator and the denominator.
\int _{-6}^{13}\frac{15}{-6-\left(-5\right)-10}\mathrm{d}x
Add 2 and 13 to get 15.
\int _{-6}^{13}\frac{15}{-6+5-10}\mathrm{d}x
The opposite of -5 is 5.
\int _{-6}^{13}\frac{15}{-1-10}\mathrm{d}x
Add -6 and 5 to get -1.
\int _{-6}^{13}\frac{15}{-11}\mathrm{d}x
Subtract 10 from -1 to get -11.
\int _{-6}^{13}-\frac{15}{11}\mathrm{d}x
Fraction \frac{15}{-11} can be rewritten as -\frac{15}{11} by extracting the negative sign.
\int -\frac{15}{11}\mathrm{d}x
Evaluate the indefinite integral first.
-\frac{15x}{11}
Find the integral of -\frac{15}{11} using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{15}{11}\times 13+\frac{15}{11}\left(-6\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{285}{11}
Simplify.