Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-5}^{5}x^{3}+\frac{1}{2}x^{2}\mathrm{d}x
Use the distributive property to multiply x^{2} by x+\frac{1}{2}.
\int x^{3}+\frac{x^{2}}{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int \frac{x^{2}}{2}\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x+\frac{\int x^{2}\mathrm{d}x}{2}
Factor out the constant in each of the terms.
\frac{x^{4}}{4}+\frac{\int x^{2}\mathrm{d}x}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}+\frac{x^{3}}{6}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply \frac{1}{2} times \frac{x^{3}}{3}.
\frac{5^{4}}{4}+\frac{5^{3}}{6}-\left(\frac{\left(-5\right)^{4}}{4}+\frac{\left(-5\right)^{3}}{6}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{125}{3}
Simplify.