Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 3x^{2}+24x+49\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{2}\mathrm{d}x+\int 24x\mathrm{d}x+\int 49\mathrm{d}x
Integrate the sum term by term.
3\int x^{2}\mathrm{d}x+24\int x\mathrm{d}x+\int 49\mathrm{d}x
Factor out the constant in each of the terms.
x^{3}+24\int x\mathrm{d}x+\int 49\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
x^{3}+12x^{2}+\int 49\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 24 times \frac{x^{2}}{2}.
x^{3}+12x^{2}+49x
Find the integral of 49 using the table of common integrals rule \int a\mathrm{d}x=ax.
\left(-4\right)^{3}+12\left(-4\right)^{2}+49\left(-4\right)-\left(\left(-5\right)^{3}+12\left(-5\right)^{2}+49\left(-5\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2
Simplify.