Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-5}^{-1}\frac{7}{3}x^{4}\left(216-108x^{5}+18\left(x^{5}\right)^{2}-\left(x^{5}\right)^{3}\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(6-x^{5}\right)^{3}.
\int _{-5}^{-1}\frac{7}{3}x^{4}\left(216-108x^{5}+18x^{10}-\left(x^{5}\right)^{3}\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\int _{-5}^{-1}\frac{7}{3}x^{4}\left(216-108x^{5}+18x^{10}-x^{15}\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\int _{-5}^{-1}504x^{4}-252x^{9}+42x^{14}-\frac{7}{3}x^{19}\mathrm{d}x
Use the distributive property to multiply \frac{7}{3}x^{4} by 216-108x^{5}+18x^{10}-x^{15}.
\int 504x^{4}-252x^{9}+42x^{14}-\frac{7x^{19}}{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int 504x^{4}\mathrm{d}x+\int -252x^{9}\mathrm{d}x+\int 42x^{14}\mathrm{d}x+\int -\frac{7x^{19}}{3}\mathrm{d}x
Integrate the sum term by term.
504\int x^{4}\mathrm{d}x-252\int x^{9}\mathrm{d}x+42\int x^{14}\mathrm{d}x-\frac{7\int x^{19}\mathrm{d}x}{3}
Factor out the constant in each of the terms.
\frac{504x^{5}}{5}-252\int x^{9}\mathrm{d}x+42\int x^{14}\mathrm{d}x-\frac{7\int x^{19}\mathrm{d}x}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 504 times \frac{x^{5}}{5}.
\frac{504x^{5}}{5}-\frac{126x^{10}}{5}+42\int x^{14}\mathrm{d}x-\frac{7\int x^{19}\mathrm{d}x}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{9}\mathrm{d}x with \frac{x^{10}}{10}. Multiply -252 times \frac{x^{10}}{10}.
\frac{504x^{5}}{5}-\frac{126x^{10}}{5}+\frac{14x^{15}}{5}-\frac{7\int x^{19}\mathrm{d}x}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{14}\mathrm{d}x with \frac{x^{15}}{15}. Multiply 42 times \frac{x^{15}}{15}.
\frac{504x^{5}}{5}-\frac{126x^{10}}{5}+\frac{14x^{15}}{5}-\frac{7x^{20}}{60}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{19}\mathrm{d}x with \frac{x^{20}}{20}. Multiply -\frac{7}{3} times \frac{x^{20}}{20}.
\frac{504}{5}\left(-1\right)^{5}-\frac{126}{5}\left(-1\right)^{10}+\frac{14}{5}\left(-1\right)^{15}-\frac{7}{60}\left(-1\right)^{20}-\left(\frac{504}{5}\left(-5\right)^{5}-\frac{126}{5}\left(-5\right)^{10}+\frac{14}{5}\left(-5\right)^{15}-\frac{7}{60}\left(-5\right)^{20}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
11211895985444
Simplify.