Evaluate
11211895985444
Share
Copied to clipboard
\int _{-5}^{-1}\frac{7}{3}x^{4}\left(216-108x^{5}+18\left(x^{5}\right)^{2}-\left(x^{5}\right)^{3}\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(6-x^{5}\right)^{3}.
\int _{-5}^{-1}\frac{7}{3}x^{4}\left(216-108x^{5}+18x^{10}-\left(x^{5}\right)^{3}\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\int _{-5}^{-1}\frac{7}{3}x^{4}\left(216-108x^{5}+18x^{10}-x^{15}\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\int _{-5}^{-1}504x^{4}-252x^{9}+42x^{14}-\frac{7}{3}x^{19}\mathrm{d}x
Use the distributive property to multiply \frac{7}{3}x^{4} by 216-108x^{5}+18x^{10}-x^{15}.
\int 504x^{4}-252x^{9}+42x^{14}-\frac{7x^{19}}{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int 504x^{4}\mathrm{d}x+\int -252x^{9}\mathrm{d}x+\int 42x^{14}\mathrm{d}x+\int -\frac{7x^{19}}{3}\mathrm{d}x
Integrate the sum term by term.
504\int x^{4}\mathrm{d}x-252\int x^{9}\mathrm{d}x+42\int x^{14}\mathrm{d}x-\frac{7\int x^{19}\mathrm{d}x}{3}
Factor out the constant in each of the terms.
\frac{504x^{5}}{5}-252\int x^{9}\mathrm{d}x+42\int x^{14}\mathrm{d}x-\frac{7\int x^{19}\mathrm{d}x}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 504 times \frac{x^{5}}{5}.
\frac{504x^{5}}{5}-\frac{126x^{10}}{5}+42\int x^{14}\mathrm{d}x-\frac{7\int x^{19}\mathrm{d}x}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{9}\mathrm{d}x with \frac{x^{10}}{10}. Multiply -252 times \frac{x^{10}}{10}.
\frac{504x^{5}}{5}-\frac{126x^{10}}{5}+\frac{14x^{15}}{5}-\frac{7\int x^{19}\mathrm{d}x}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{14}\mathrm{d}x with \frac{x^{15}}{15}. Multiply 42 times \frac{x^{15}}{15}.
\frac{504x^{5}}{5}-\frac{126x^{10}}{5}+\frac{14x^{15}}{5}-\frac{7x^{20}}{60}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{19}\mathrm{d}x with \frac{x^{20}}{20}. Multiply -\frac{7}{3} times \frac{x^{20}}{20}.
\frac{504}{5}\left(-1\right)^{5}-\frac{126}{5}\left(-1\right)^{10}+\frac{14}{5}\left(-1\right)^{15}-\frac{7}{60}\left(-1\right)^{20}-\left(\frac{504}{5}\left(-5\right)^{5}-\frac{126}{5}\left(-5\right)^{10}+\frac{14}{5}\left(-5\right)^{15}-\frac{7}{60}\left(-5\right)^{20}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
11211895985444
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}