Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -2x^{2}+3x\mathrm{d}x
Evaluate the indefinite integral first.
\int -2x^{2}\mathrm{d}x+\int 3x\mathrm{d}x
Integrate the sum term by term.
-2\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{2x^{3}}{3}+3\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -2 times \frac{x^{3}}{3}.
-\frac{2x^{3}}{3}+\frac{3x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
-\frac{2}{3}\times 4^{3}+\frac{3}{2}\times 4^{2}-\left(-\frac{2}{3}\left(-4\right)^{3}+\frac{3}{2}\left(-4\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{256}{3}
Simplify.