Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -\frac{x^{4}}{8}+2x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{x^{4}}{8}\mathrm{d}x+\int 2x^{2}\mathrm{d}x
Integrate the sum term by term.
-\frac{\int x^{4}\mathrm{d}x}{8}+2\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{5}}{40}+2\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -\frac{1}{8} times \frac{x^{5}}{5}.
-\frac{x^{5}}{40}+\frac{2x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
-\frac{4^{5}}{40}+\frac{2}{3}\times 4^{3}-\left(-\frac{\left(-4\right)^{5}}{40}+\frac{2}{3}\left(-4\right)^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{512}{15}
Simplify.