Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4-x^{2}-3x\mathrm{d}x
Evaluate the indefinite integral first.
\int 4\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -3x\mathrm{d}x
Integrate the sum term by term.
\int 4\mathrm{d}x-\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x
Factor out the constant in each of the terms.
4x-\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
4x-\frac{x^{3}}{3}-3\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
4x-\frac{x^{3}}{3}-\frac{3x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
4\times 1-\frac{1^{3}}{3}-\frac{3}{2}\times 1^{2}-\left(4\left(-4\right)-\frac{\left(-4\right)^{3}}{3}-\frac{3}{2}\left(-4\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{125}{6}
Simplify.