Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{2}+10x+8\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x^{2}\mathrm{d}x+\int 10x\mathrm{d}x+\int 8\mathrm{d}x
Integrate the sum term by term.
2\int x^{2}\mathrm{d}x+10\int x\mathrm{d}x+\int 8\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{3}}{3}+10\int x\mathrm{d}x+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+5x^{2}+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 10 times \frac{x^{2}}{2}.
\frac{2x^{3}}{3}+5x^{2}+8x
Find the integral of 8 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2}{3}\left(-1\right)^{3}+5\left(-1\right)^{2}+8\left(-1\right)-\left(\frac{2}{3}\left(-4\right)^{3}+5\left(-4\right)^{2}+8\left(-4\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-9
Simplify.