Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -2x^{2}-5x+7\mathrm{d}x
Evaluate the indefinite integral first.
\int -2x^{2}\mathrm{d}x+\int -5x\mathrm{d}x+\int 7\mathrm{d}x
Integrate the sum term by term.
-2\int x^{2}\mathrm{d}x-5\int x\mathrm{d}x+\int 7\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{2x^{3}}{3}-5\int x\mathrm{d}x+\int 7\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -2 times \frac{x^{3}}{3}.
-\frac{2x^{3}}{3}-\frac{5x^{2}}{2}+\int 7\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -5 times \frac{x^{2}}{2}.
-\frac{2x^{3}}{3}-\frac{5x^{2}}{2}+7x
Find the integral of 7 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{2}{3}\times 1^{3}-\frac{5}{2}\times 1^{2}+7\times 1-\left(-\frac{2}{3}\left(-3.5\right)^{3}-\frac{5}{2}\left(-3.5\right)^{2}+7\left(-3.5\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{243}{8}
Simplify.