Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int _{-3}^{2}x^{2}-81y\mathrm{d}x
Calculate 9 to the power of 2 and get 81.
\int x^{2}-81y\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -81y\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-81\int y\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-81\int y\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-81yx
Find the integral of y using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2^{3}}{3}-81y\times 2-\left(\frac{\left(-3\right)^{3}}{3}-81y\left(-3\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{35}{3}-405y
Simplify.