Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int 1+r_{α}-\left(1-\sqrt{2}\right)\mathrm{d}y
Evaluate the indefinite integral first.
\left(1+r_{α}-\left(1-\sqrt{2}\right)\right)y
Find the integral of 1+r_{α}-\left(1-\sqrt{2}\right) using the table of common integrals rule \int a\mathrm{d}y=ay.
\left(r_{α}+\sqrt{2}\right)y
Simplify.
\left(r_{α}+2^{\frac{1}{2}}\right)\left(1-x^{2}\right)-\left(r_{α}+2^{\frac{1}{2}}\right)\left(-2\right)x
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\left(r_{α}+\sqrt{2}\right)\left(1-x^{2}+2x\right)
Simplify.