Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 8x-x^{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int 8x\mathrm{d}x+\int -x^{3}\mathrm{d}x
Integrate the sum term by term.
8\int x\mathrm{d}x-\int x^{3}\mathrm{d}x
Factor out the constant in each of the terms.
4x^{2}-\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 8 times \frac{x^{2}}{2}.
4x^{2}-\frac{x^{4}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -1 times \frac{x^{4}}{4}.
4\times 7^{2}-\frac{7^{4}}{4}-\left(4\left(-2\right)^{2}-\frac{\left(-2\right)^{4}}{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{1665}{4}
Simplify.