Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{5}+3x^{2}+2x^{4}+3\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{5}\mathrm{d}x+\int 3x^{2}\mathrm{d}x+\int 2x^{4}\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
\int x^{5}\mathrm{d}x+3\int x^{2}\mathrm{d}x+2\int x^{4}\mathrm{d}x+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{6}}{6}+3\int x^{2}\mathrm{d}x+2\int x^{4}\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}.
\frac{x^{6}}{6}+x^{3}+2\int x^{4}\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
\frac{x^{6}}{6}+x^{3}+\frac{2x^{5}}{5}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 2 times \frac{x^{5}}{5}.
\frac{x^{6}}{6}+x^{3}+\frac{2x^{5}}{5}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{6^{6}}{6}+6^{3}+\frac{2}{5}\times 6^{5}+3\times 6-\left(\frac{\left(-2\right)^{6}}{6}+\left(-2\right)^{3}+\frac{2}{5}\left(-2\right)^{5}+3\left(-2\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{167048}{15}
Simplify.