Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{3}-x^{2}+4\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 4\mathrm{d}x
Integrate the sum term by term.
2\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+\int 4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{2}-\int x^{2}\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 2 times \frac{x^{4}}{4}.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+4x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{6^{4}}{2}-\frac{6^{3}}{3}+4\times 6-\left(\frac{\left(-2\right)^{4}}{2}-\frac{\left(-2\right)^{3}}{3}+4\left(-2\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1792}{3}
Simplify.