Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 5s^{3}\mathrm{d}s
Evaluate the indefinite integral first.
5\int s^{3}\mathrm{d}s
Factor out the constant using \int af\left(s\right)\mathrm{d}s=a\int f\left(s\right)\mathrm{d}s.
\frac{5s^{4}}{4}
Since \int s^{k}\mathrm{d}s=\frac{s^{k+1}}{k+1} for k\neq -1, replace \int s^{3}\mathrm{d}s with \frac{s^{4}}{4}.
\frac{5}{4}\times 5^{4}-\frac{5}{4}\left(-2\right)^{4}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3045}{4}
Simplify.