Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-2}^{3}6-x^{2}+x\mathrm{d}x
Multiply -1 and -1 to get 1.
\int 6-x^{2}+x\mathrm{d}x
Evaluate the indefinite integral first.
\int 6\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\int 6\mathrm{d}x-\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
6x-\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Find the integral of 6 using the table of common integrals rule \int a\mathrm{d}x=ax.
6x-\frac{x^{3}}{3}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
6x-\frac{x^{3}}{3}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
6\times 3-\frac{3^{3}}{3}+\frac{3^{2}}{2}-\left(6\left(-2\right)-\frac{\left(-2\right)^{3}}{3}+\frac{\left(-2\right)^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{125}{6}
Simplify.