Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4x^{2}-6x+2\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{2}\mathrm{d}x+\int -6x\mathrm{d}x+\int 2\mathrm{d}x
Integrate the sum term by term.
4\int x^{2}\mathrm{d}x-6\int x\mathrm{d}x+\int 2\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{3}}{3}-6\int x\mathrm{d}x+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 4 times \frac{x^{3}}{3}.
\frac{4x^{3}}{3}-3x^{2}+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -6 times \frac{x^{2}}{2}.
\frac{4x^{3}}{3}-3x^{2}+2x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4}{3}\times 3^{3}-3\times 3^{2}+2\times 3-\left(\frac{4}{3}\left(-2\right)^{3}-3\left(-2\right)^{2}+2\left(-2\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{125}{3}
Simplify.