Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 8-2x^{2}-4-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 8\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -4\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 8\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int -4\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
8x-2\int x^{2}\mathrm{d}x+\int -4\mathrm{d}x-\int x^{2}\mathrm{d}x
Find the integral of 8 using the table of common integrals rule \int a\mathrm{d}x=ax.
8x-\frac{2x^{3}}{3}+\int -4\mathrm{d}x-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -2 times \frac{x^{3}}{3}.
8x-\frac{2x^{3}}{3}-4x-\int x^{2}\mathrm{d}x
Find the integral of -4 using the table of common integrals rule \int a\mathrm{d}x=ax.
8x-\frac{2x^{3}}{3}-4x-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
4x-x^{3}
Simplify.
4\times 2-2^{3}-\left(4\left(-2\right)-\left(-2\right)^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
0
Simplify.