Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int y+2x-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int y\mathrm{d}x+\int 2x\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int y\mathrm{d}x+2\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
yx+2\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Find the integral of y using the table of common integrals rule \int a\mathrm{d}x=ax.
yx+x^{2}-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
yx+x^{2}-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
y\times 2+2^{2}-\frac{2^{3}}{3}-\left(y\left(-2\right)+\left(-2\right)^{2}-\frac{\left(-2\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{16}{3}+4y
Simplify.