Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 14y^{2}-56\mathrm{d}y
Evaluate the indefinite integral first.
\int 14y^{2}\mathrm{d}y+\int -56\mathrm{d}y
Integrate the sum term by term.
14\int y^{2}\mathrm{d}y+\int -56\mathrm{d}y
Factor out the constant in each of the terms.
\frac{14y^{3}}{3}+\int -56\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply 14 times \frac{y^{3}}{3}.
\frac{14y^{3}}{3}-56y
Find the integral of -56 using the table of common integrals rule \int a\mathrm{d}y=ay.
\frac{14}{3}\times 2^{3}-56\times 2-\left(\frac{14}{3}\left(-2\right)^{3}-56\left(-2\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{448}{3}
Simplify.