Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2-x-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 2\mathrm{d}x+\int -x\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 2\mathrm{d}x-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
2x-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
2x-\frac{x^{2}}{2}-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
2x-\frac{x^{2}}{2}-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
2\times 1-\frac{1^{2}}{2}-\frac{1^{3}}{3}-\left(2\left(-2\right)-\frac{\left(-2\right)^{2}}{2}-\frac{\left(-2\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9}{2}
Simplify.