Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-2}^{1}2x^{2}+5x-3-3x-1\mathrm{d}x
To find the opposite of 3x+1, find the opposite of each term.
\int _{-2}^{1}2x^{2}+2x-3-1\mathrm{d}x
Combine 5x and -3x to get 2x.
\int _{-2}^{1}2x^{2}+2x-4\mathrm{d}x
Subtract 1 from -3 to get -4.
\int 2x^{2}+2x-4\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -4\mathrm{d}x
Integrate the sum term by term.
2\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{3}}{3}+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+x^{2}+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
\frac{2x^{3}}{3}+x^{2}-4x
Find the integral of -4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2}{3}\times 1^{3}+1^{2}-4-\left(\frac{2}{3}\left(-2\right)^{3}+\left(-2\right)^{2}-4\left(-2\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-9
Simplify.