Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 7x^{2}+7x\mathrm{d}x
Evaluate the indefinite integral first.
\int 7x^{2}\mathrm{d}x+\int 7x\mathrm{d}x
Integrate the sum term by term.
7\int x^{2}\mathrm{d}x+7\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{7x^{3}}{3}+7\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 7 times \frac{x^{3}}{3}.
\frac{7x^{3}}{3}+\frac{7x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 7 times \frac{x^{2}}{2}.
\frac{7}{3}\times 0^{3}+\frac{7}{2}\times 0^{2}-\left(\frac{7}{3}\left(-2\right)^{3}+\frac{7}{2}\left(-2\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{14}{3}
Simplify.