Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-2}^{0}2x+12-x^{2}-6x\mathrm{d}x
Apply the distributive property by multiplying each term of 2-x by each term of x+6.
\int _{-2}^{0}-4x+12-x^{2}\mathrm{d}x
Combine 2x and -6x to get -4x.
\int -4x+12-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -4x\mathrm{d}x+\int 12\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
-4\int x\mathrm{d}x+\int 12\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
-2x^{2}+\int 12\mathrm{d}x-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
-2x^{2}+12x-\int x^{2}\mathrm{d}x
Find the integral of 12 using the table of common integrals rule \int a\mathrm{d}x=ax.
-2x^{2}+12x-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-2\times 0^{2}+12\times 0-\frac{0^{3}}{3}-\left(-2\left(-2\right)^{2}+12\left(-2\right)-\frac{\left(-2\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{88}{3}
Simplify.