Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 16x-e^{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int 16x\mathrm{d}x+\int -e^{x}\mathrm{d}x
Integrate the sum term by term.
16\int x\mathrm{d}x-\int e^{x}\mathrm{d}x
Factor out the constant in each of the terms.
8x^{2}-\int e^{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 16 times \frac{x^{2}}{2}.
8x^{2}-e^{x}
Use \int e^{x}\mathrm{d}x=e^{x} from the table of common integrals to obtain the result.
8\times 0^{2}-e^{0}-\left(8\left(-2\right)^{2}-e^{-2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-33+\frac{1}{e^{2}}
Simplify.