Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x^{4}}{2}+\frac{x^{3}}{4}-x\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{x^{4}}{2}\mathrm{d}x+\int \frac{x^{3}}{4}\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
\frac{\int x^{4}\mathrm{d}x}{2}+\frac{\int x^{3}\mathrm{d}x}{4}-\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{10}+\frac{\int x^{3}\mathrm{d}x}{4}-\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply \frac{1}{2} times \frac{x^{5}}{5}.
\frac{x^{5}}{10}+\frac{x^{4}}{16}-\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply \frac{1}{4} times \frac{x^{4}}{4}.
\frac{x^{5}}{10}+\frac{x^{4}}{16}-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{0^{5}}{10}+\frac{0^{4}}{16}-\frac{0^{2}}{2}-\left(\frac{\left(-2\right)^{5}}{10}+\frac{\left(-2\right)^{4}}{16}-\frac{\left(-2\right)^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{21}{5}
Simplify.