Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -11x^{2}-11x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int -11x^{2}\mathrm{d}x+\int -11x^{4}\mathrm{d}x
Integrate the sum term by term.
-11\int x^{2}\mathrm{d}x-11\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{11x^{3}}{3}-11\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -11 times \frac{x^{3}}{3}.
-\frac{11x^{3}}{3}-\frac{11x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -11 times \frac{x^{5}}{5}.
-\frac{11}{3}\times 15^{3}-\frac{11}{5}\times 15^{5}-\left(-\frac{11}{3}\left(-10\right)^{3}-\frac{11}{5}\left(-10\right)^{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{5720000}{3}
Simplify.