Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{3}2x^{3}+8\mathrm{d}x
Use the distributive property to multiply 2 by x^{3}+4.
\int 2x^{3}+8\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x^{3}\mathrm{d}x+\int 8\mathrm{d}x
Integrate the sum term by term.
2\int x^{3}\mathrm{d}x+\int 8\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{2}+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 2 times \frac{x^{4}}{4}.
\frac{x^{4}}{2}+8x
Find the integral of 8 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3^{4}}{2}+8\times 3-\left(\frac{\left(-1\right)^{4}}{2}+8\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
72
Simplify.