Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int u^{3}+u\mathrm{d}u
Evaluate the indefinite integral first.
\int u^{3}\mathrm{d}u+\int u\mathrm{d}u
Integrate the sum term by term.
\frac{u^{4}}{4}+\int u\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{3}\mathrm{d}u with \frac{u^{4}}{4}.
\frac{u^{4}}{4}+\frac{u^{2}}{2}
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u\mathrm{d}u with \frac{u^{2}}{2}.
\frac{3^{4}}{4}+\frac{3^{2}}{2}-\left(\frac{\left(-1\right)^{4}}{4}+\frac{\left(-1\right)^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
24
Simplify.