Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 5-\frac{x^{3}}{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int 5\mathrm{d}x+\int -\frac{x^{3}}{4}\mathrm{d}x
Integrate the sum term by term.
\int 5\mathrm{d}x-\frac{\int x^{3}\mathrm{d}x}{4}
Factor out the constant in each of the terms.
5x-\frac{\int x^{3}\mathrm{d}x}{4}
Find the integral of 5 using the table of common integrals rule \int a\mathrm{d}x=ax.
5x-\frac{x^{4}}{16}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -\frac{1}{4} times \frac{x^{4}}{4}.
5\times 3-\frac{3^{4}}{16}-\left(5\left(-1\right)-\frac{\left(-1\right)^{4}}{16}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
15
Simplify.