Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4x^{4}-5x+7\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{4}\mathrm{d}x+\int -5x\mathrm{d}x+\int 7\mathrm{d}x
Integrate the sum term by term.
4\int x^{4}\mathrm{d}x-5\int x\mathrm{d}x+\int 7\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{5}}{5}-5\int x\mathrm{d}x+\int 7\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 4 times \frac{x^{5}}{5}.
\frac{4x^{5}}{5}-\frac{5x^{2}}{2}+\int 7\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -5 times \frac{x^{2}}{2}.
\frac{4x^{5}}{5}-\frac{5x^{2}}{2}+7x
Find the integral of 7 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4}{5}\times 3^{5}-\frac{5}{2}\times 3^{2}+7\times 3-\left(\frac{4}{5}\left(-1\right)^{5}-\frac{5}{2}\left(-1\right)^{2}+7\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1016}{5}
Simplify.