Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{3}3^{2}-x^{2}\mathrm{d}x
Consider \left(3-x\right)\left(3+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\int _{-1}^{3}9-x^{2}\mathrm{d}x
Calculate 3 to the power of 2 and get 9.
\int 9-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 9\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 9\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
9x-\int x^{2}\mathrm{d}x
Find the integral of 9 using the table of common integrals rule \int a\mathrm{d}x=ax.
9x-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
9\times 3-\frac{3^{3}}{3}-\left(9\left(-1\right)-\frac{\left(-1\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{80}{3}
Simplify.