Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}+x^{2}-6x-8\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int x^{2}\mathrm{d}x+\int -6x\mathrm{d}x+\int -8\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x+\int x^{2}\mathrm{d}x-6\int x\mathrm{d}x+\int -8\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}+\int x^{2}\mathrm{d}x-6\int x\mathrm{d}x+\int -8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{x^{3}}{3}-6\int x\mathrm{d}x+\int -8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{5}}{5}+\frac{x^{3}}{3}-3x^{2}+\int -8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -6 times \frac{x^{2}}{2}.
\frac{x^{5}}{5}+\frac{x^{3}}{3}-3x^{2}-8x
Find the integral of -8 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2^{5}}{5}+\frac{2^{3}}{3}-3\times 2^{2}-8\times 2-\left(\frac{\left(-1\right)^{5}}{5}+\frac{\left(-1\right)^{3}}{3}-3\left(-1\right)^{2}-8\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{117}{5}
Simplify.