Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int y^{2}-2-y\mathrm{d}y
Evaluate the indefinite integral first.
\int y^{2}\mathrm{d}y+\int -2\mathrm{d}y+\int -y\mathrm{d}y
Integrate the sum term by term.
\int y^{2}\mathrm{d}y+\int -2\mathrm{d}y-\int y\mathrm{d}y
Factor out the constant in each of the terms.
\frac{y^{3}}{3}+\int -2\mathrm{d}y-\int y\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}.
\frac{y^{3}}{3}-2y-\int y\mathrm{d}y
Find the integral of -2 using the table of common integrals rule \int a\mathrm{d}y=ay.
\frac{y^{3}}{3}-2y-\frac{y^{2}}{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -1 times \frac{y^{2}}{2}.
\frac{2^{3}}{3}-2\times 2-\frac{2^{2}}{2}-\left(\frac{\left(-1\right)^{3}}{3}-2\left(-1\right)-\frac{\left(-1\right)^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{9}{2}
Simplify.