Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{2}\left(x^{2}-2x+x-2\right)\left(x-4\right)\mathrm{d}x
Apply the distributive property by multiplying each term of x+1 by each term of x-2.
\int _{-1}^{2}\left(x^{2}-x-2\right)\left(x-4\right)\mathrm{d}x
Combine -2x and x to get -x.
\int _{-1}^{2}x^{3}-4x^{2}-x^{2}+4x-2x+8\mathrm{d}x
Apply the distributive property by multiplying each term of x^{2}-x-2 by each term of x-4.
\int _{-1}^{2}x^{3}-5x^{2}+4x-2x+8\mathrm{d}x
Combine -4x^{2} and -x^{2} to get -5x^{2}.
\int _{-1}^{2}x^{3}-5x^{2}+2x+8\mathrm{d}x
Combine 4x and -2x to get 2x.
\int x^{3}-5x^{2}+2x+8\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -5x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int 8\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-5\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int 8\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-5\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{5x^{3}}{3}+2\int x\mathrm{d}x+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -5 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-\frac{5x^{3}}{3}+x^{2}+\int 8\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
\frac{x^{4}}{4}-\frac{5x^{3}}{3}+x^{2}+8x
Find the integral of 8 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2^{4}}{4}-\frac{5}{3}\times 2^{3}+2^{2}+8\times 2-\left(\frac{\left(-1\right)^{4}}{4}-\frac{5}{3}\left(-1\right)^{3}+\left(-1\right)^{2}+8\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{63}{4}
Simplify.