Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{2}t^{2}-2t+t-2\mathrm{d}t
Apply the distributive property by multiplying each term of t+1 by each term of t-2.
\int _{-1}^{2}t^{2}-t-2\mathrm{d}t
Combine -2t and t to get -t.
\int t^{2}-t-2\mathrm{d}t
Evaluate the indefinite integral first.
\int t^{2}\mathrm{d}t+\int -t\mathrm{d}t+\int -2\mathrm{d}t
Integrate the sum term by term.
\int t^{2}\mathrm{d}t-\int t\mathrm{d}t+\int -2\mathrm{d}t
Factor out the constant in each of the terms.
\frac{t^{3}}{3}-\int t\mathrm{d}t+\int -2\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}.
\frac{t^{3}}{3}-\frac{t^{2}}{2}+\int -2\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -1 times \frac{t^{2}}{2}.
\frac{t^{3}}{3}-\frac{t^{2}}{2}-2t
Find the integral of -2 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{t^{3}}{3}-2t-\frac{t^{2}}{2}
Simplify.
\frac{2^{3}}{3}-2\times 2-\frac{2^{2}}{2}-\left(\frac{\left(-1\right)^{3}}{3}-2\left(-1\right)-\frac{\left(-1\right)^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{9}{2}
Simplify.