Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4x^{2}-24x+9\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{2}\mathrm{d}x+\int -24x\mathrm{d}x+\int 9\mathrm{d}x
Integrate the sum term by term.
4\int x^{2}\mathrm{d}x-24\int x\mathrm{d}x+\int 9\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{3}}{3}-24\int x\mathrm{d}x+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 4 times \frac{x^{3}}{3}.
\frac{4x^{3}}{3}-12x^{2}+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -24 times \frac{x^{2}}{2}.
\frac{4x^{3}}{3}-12x^{2}+9x
Find the integral of 9 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4}{3}\times 2^{3}-12\times 2^{2}+9\times 2-\left(\frac{4}{3}\left(-1\right)^{3}-12\left(-1\right)^{2}+9\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
3
Simplify.