Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{2}2x^{2}+8x-x-4\mathrm{d}x
Apply the distributive property by multiplying each term of 2x-1 by each term of x+4.
\int _{-1}^{2}2x^{2}+7x-4\mathrm{d}x
Combine 8x and -x to get 7x.
\int 2x^{2}+7x-4\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x^{2}\mathrm{d}x+\int 7x\mathrm{d}x+\int -4\mathrm{d}x
Integrate the sum term by term.
2\int x^{2}\mathrm{d}x+7\int x\mathrm{d}x+\int -4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{3}}{3}+7\int x\mathrm{d}x+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+\frac{7x^{2}}{2}+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 7 times \frac{x^{2}}{2}.
\frac{2x^{3}}{3}+\frac{7x^{2}}{2}-4x
Find the integral of -4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2}{3}\times 2^{3}+\frac{7}{2}\times 2^{2}-4\times 2-\left(\frac{2}{3}\left(-1\right)^{3}+\frac{7}{2}\left(-1\right)^{2}-4\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9}{2}
Simplify.