Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{2}4t^{2}+4t+1\mathrm{d}t
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2t+1\right)^{2}.
\int 4t^{2}+4t+1\mathrm{d}t
Evaluate the indefinite integral first.
\int 4t^{2}\mathrm{d}t+\int 4t\mathrm{d}t+\int 1\mathrm{d}t
Integrate the sum term by term.
4\int t^{2}\mathrm{d}t+4\int t\mathrm{d}t+\int 1\mathrm{d}t
Factor out the constant in each of the terms.
\frac{4t^{3}}{3}+4\int t\mathrm{d}t+\int 1\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 4 times \frac{t^{3}}{3}.
\frac{4t^{3}}{3}+2t^{2}+\int 1\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 4 times \frac{t^{2}}{2}.
\frac{4t^{3}}{3}+2t^{2}+t
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{4}{3}\times 2^{3}+2\times 2^{2}+2-\left(\frac{4}{3}\left(-1\right)^{3}+2\left(-1\right)^{2}-1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
21
Simplify.