Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}+6x^{2}+1\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int 6x^{2}\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x+6\int x^{2}\mathrm{d}x+\int 1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}+6\int x^{2}\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}+2x^{3}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}+2x^{3}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{1^{4}}{4}+2\times 1^{3}+1-\left(\frac{\left(-1\right)^{4}}{4}+2\left(-1\right)^{3}-1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
6
Simplify.