Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{1}t\left(1-2t+t^{2}\right)\mathrm{d}t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-t\right)^{2}.
\int _{-1}^{1}t-2t^{2}+t^{3}\mathrm{d}t
Use the distributive property to multiply t by 1-2t+t^{2}.
\int t-2t^{2}+t^{3}\mathrm{d}t
Evaluate the indefinite integral first.
\int t\mathrm{d}t+\int -2t^{2}\mathrm{d}t+\int t^{3}\mathrm{d}t
Integrate the sum term by term.
\int t\mathrm{d}t-2\int t^{2}\mathrm{d}t+\int t^{3}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{t^{2}}{2}-2\int t^{2}\mathrm{d}t+\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}.
\frac{t^{2}}{2}-\frac{2t^{3}}{3}+\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply -2 times \frac{t^{3}}{3}.
\frac{t^{2}}{2}-\frac{2t^{3}}{3}+\frac{t^{4}}{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}.
\frac{t^{4}}{4}-\frac{2t^{3}}{3}+\frac{t^{2}}{2}
Simplify.
\frac{1^{4}}{4}-\frac{2}{3}\times 1^{3}+\frac{1^{2}}{2}-\left(\frac{\left(-1\right)^{4}}{4}-\frac{2}{3}\left(-1\right)^{3}+\frac{\left(-1\right)^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{4}{3}
Simplify.