Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{1}1296-y^{2}-5\mathrm{d}y
Calculate 6 to the power of 4 and get 1296.
\int _{-1}^{1}1291-y^{2}\mathrm{d}y
Subtract 5 from 1296 to get 1291.
\int 1291-y^{2}\mathrm{d}y
Evaluate the indefinite integral first.
\int 1291\mathrm{d}y+\int -y^{2}\mathrm{d}y
Integrate the sum term by term.
\int 1291\mathrm{d}y-\int y^{2}\mathrm{d}y
Factor out the constant in each of the terms.
1291y-\int y^{2}\mathrm{d}y
Find the integral of 1291 using the table of common integrals rule \int a\mathrm{d}y=ay.
1291y-\frac{y^{3}}{3}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -1 times \frac{y^{3}}{3}.
1291\times 1-\frac{1^{3}}{3}-\left(1291\left(-1\right)-\frac{\left(-1\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7744}{3}
Simplify.