Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{1}x^{3}-3x^{2}+3x-1\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
\int x^{3}-3x^{2}+3x-1\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -3x^{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-3\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x+\int -1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-3\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-x^{3}+3\int x\mathrm{d}x+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-x^{3}+\frac{3x^{2}}{2}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
\frac{x^{4}}{4}-x^{3}+\frac{3x^{2}}{2}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{1^{4}}{4}-1^{3}+\frac{3}{2}\times 1^{2}-1-\left(\frac{\left(-1\right)^{4}}{4}-\left(-1\right)^{3}+\frac{3}{2}\left(-1\right)^{2}-\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-4
Simplify.