Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{7}+x+1\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{7}\mathrm{d}x+\int x\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
\frac{x^{8}}{8}+\int x\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}.
\frac{x^{8}}{8}+\frac{x^{2}}{2}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{8}}{8}+\frac{x^{2}}{2}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{1^{8}}{8}+\frac{1^{2}}{2}+1-\left(\frac{\left(-1\right)^{8}}{8}+\frac{\left(-1\right)^{2}}{2}-1\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2
Simplify.