Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{1}2x^{5}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\int 2x^{5}\mathrm{d}x
Evaluate the indefinite integral first.
2\int x^{5}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{x^{6}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 2 times \frac{x^{6}}{6}.
\frac{1^{6}}{3}-\frac{\left(-1\right)^{6}}{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
0
Simplify.