Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{1}y-y^{2}\mathrm{d}y
Use the distributive property to multiply 1-y by y.
\int y-y^{2}\mathrm{d}y
Evaluate the indefinite integral first.
\int y\mathrm{d}y+\int -y^{2}\mathrm{d}y
Integrate the sum term by term.
\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
Factor out the constant in each of the terms.
\frac{y^{2}}{2}-\int y^{2}\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}.
\frac{y^{2}}{2}-\frac{y^{3}}{3}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -1 times \frac{y^{3}}{3}.
\frac{1^{2}}{2}-\frac{1^{3}}{3}-\left(\frac{\left(-1\right)^{2}}{2}-\frac{\left(-1\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{2}{3}
Simplify.