Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{1}4\left(x^{2}\right)^{2}-12x^{2}+9+6x^{4}\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x^{2}-3\right)^{2}.
\int _{-1}^{1}4x^{4}-12x^{2}+9+6x^{4}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int _{-1}^{1}10x^{4}-12x^{2}+9\mathrm{d}x
Combine 4x^{4} and 6x^{4} to get 10x^{4}.
\int 10x^{4}-12x^{2}+9\mathrm{d}x
Evaluate the indefinite integral first.
\int 10x^{4}\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int 9\mathrm{d}x
Integrate the sum term by term.
10\int x^{4}\mathrm{d}x-12\int x^{2}\mathrm{d}x+\int 9\mathrm{d}x
Factor out the constant in each of the terms.
2x^{5}-12\int x^{2}\mathrm{d}x+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 10 times \frac{x^{5}}{5}.
2x^{5}-4x^{3}+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -12 times \frac{x^{3}}{3}.
2x^{5}-4x^{3}+9x
Find the integral of 9 using the table of common integrals rule \int a\mathrm{d}x=ax.
9\times 1-4\times 1^{3}+2\times 1^{5}-\left(9\left(-1\right)-4\left(-1\right)^{3}+2\left(-1\right)^{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
14
Simplify.