Evaluate
14
Share
Copied to clipboard
\int _{-1}^{1}4\left(x^{2}\right)^{2}-12x^{2}+9+6x^{4}\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x^{2}-3\right)^{2}.
\int _{-1}^{1}4x^{4}-12x^{2}+9+6x^{4}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int _{-1}^{1}10x^{4}-12x^{2}+9\mathrm{d}x
Combine 4x^{4} and 6x^{4} to get 10x^{4}.
\int 10x^{4}-12x^{2}+9\mathrm{d}x
Evaluate the indefinite integral first.
\int 10x^{4}\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int 9\mathrm{d}x
Integrate the sum term by term.
10\int x^{4}\mathrm{d}x-12\int x^{2}\mathrm{d}x+\int 9\mathrm{d}x
Factor out the constant in each of the terms.
2x^{5}-12\int x^{2}\mathrm{d}x+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 10 times \frac{x^{5}}{5}.
2x^{5}-4x^{3}+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -12 times \frac{x^{3}}{3}.
2x^{5}-4x^{3}+9x
Find the integral of 9 using the table of common integrals rule \int a\mathrm{d}x=ax.
9\times 1-4\times 1^{3}+2\times 1^{5}-\left(9\left(-1\right)-4\left(-1\right)^{3}+2\left(-1\right)^{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
14
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}