Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt[3]{t}-9\mathrm{d}t
Evaluate the indefinite integral first.
\int \sqrt[3]{t}\mathrm{d}t+\int -9\mathrm{d}t
Integrate the sum term by term.
\frac{3t^{\frac{4}{3}}}{4}+\int -9\mathrm{d}t
Rewrite \sqrt[3]{t} as t^{\frac{1}{3}}. Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{\frac{1}{3}}\mathrm{d}t with \frac{t^{\frac{4}{3}}}{\frac{4}{3}}. Simplify.
\frac{3t^{\frac{4}{3}}}{4}-9t
Find the integral of -9 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{3}{4}\times 1^{\frac{4}{3}}-9-\left(\frac{3}{4}\left(-1\right)^{\frac{4}{3}}-9\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-18
Simplify.