Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

\int -we^{kt}\mathrm{d}w
Evaluate the indefinite integral first.
-e^{kt}\int w\mathrm{d}w
Factor out the constant using \int af\left(w\right)\mathrm{d}w=a\int f\left(w\right)\mathrm{d}w.
-e^{kt}\times \frac{w^{2}}{2}
Since \int w^{k}\mathrm{d}w=\frac{w^{k+1}}{k+1} for k\neq -1, replace \int w\mathrm{d}w with \frac{w^{2}}{2}.
-\frac{e^{kt}w^{2}}{2}
Simplify.
-\frac{1}{2}e^{kt}\times 0^{2}+\frac{1}{2}e^{kt}\left(-1\right)^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{e^{kt}}{2}
Simplify.