Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}-2x^{2}-13x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -13x\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-2\int x^{2}\mathrm{d}x-13\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-2\int x^{2}\mathrm{d}x-13\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}-13\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -2 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}-\frac{13x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -13 times \frac{x^{2}}{2}.
\frac{0^{4}}{4}-\frac{2}{3}\times 0^{3}-\frac{13}{2}\times 0^{2}-\left(\frac{\left(-1\right)^{4}}{4}-\frac{2}{3}\left(-1\right)^{3}-\frac{13}{2}\left(-1\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{67}{12}
Simplify.